Using Communicability
Evaluation to Compare
Interaction Design of Two
HTML Tag Editors

Overview
The focus of this study is on the use of communicability evaluation to analyze the user’s experience
with two instances of the same type of application—HTML tag editors. Communicability is the distinctive
quality of interactive computer-based systems that communicate efficiently and effectively to uses their underlying
design intent and interactive principles. Our purpose here 1s to show how the results of this particular
evaluation method can identify, explain, and inform the redesign of problematic interaction design.
We will start by briefly describing the method. Then we will present the case study. We will
provide links to further material, discussing other situations where communicability evaluation can

be used, and to what effects

The Communicability Evaluation Method

In Semiotic Engineering the user interface is viewed as a communicating agent that can tell users
how the designers have tried to meet the users’ needs and expectations through the functions
and features of the interactive artifact they have produced. By doing so, in whichever interface
language (from natural language to direct manipulation, from gestures to voice commands, and so
on), such interactive systems interfaces represent the designers and allow for computer-mediated
designer-to-user communication at interaction time. This is why we say that such interfaces are the
designers” deputies—they speak for the designers.

The Communicability Evaluation Method (CEM) is a Semiotic Engineering method to evaluate
the quality of such designer-to-user communication. Both static and dynamic signs are important for
mutual understanding between users and the designers’ deputies. In Figure 1, for example, we see a
static picture of an interactive sate in SpiderPad, with some indications of the dynamics of interaction.

Static signs (e.g. icons on the tool bar) communicate to users (on the behalf of the designer)

what the users can do with the system. The icons surrounded by a blue box belong to a graphic

Interaction Design: Beyond human-computer interaction ~ Sharp, Rogers and Preece
© 2007 John Wiley & Sons, Ltd ISBN-13: 978-0-470-01866-8

Communicability Evaluation Study

Figure 1 Communicating design through SpiderPad’s interface

language used in numerous editors designed for Windows. Among the things they fell users are the
following: (a) ‘‘Press here to {create,open,save} a file’’; (b) “Press here to {redo,undo} the last thing you’ve
done”’; (c) ““Press here to {copy,paste} objects {to,from} the clipboard”’; etc. Together, these icons tell users
things like: “‘With this system you can: create, open, and save file; copy, paste, cut, and search text; {etc}.”
Because of certain visual patterns, they also communicate that this is a system designed for Windows
(and not for Unix, for example).

The icons surrounded by a burgundy box are more rarely encountered. In fact, the one to
the right is possibly not encountered outside SpiderPad. The T icon, for instance, is meant
to communicate that if users press that button they will be able to edit the attributes of the
{selected, surrounding} tag, whereas the *7 icon is meant to communicate that if users press that button
they will be able to edit the body tag. Note that, at first sight, the meaning of these two instances
of designer-to-user communication is less obvious to users, although to English-speaking users the
meaning of’ ¥ becomes memorable once the play on words gets across.

Dynamic signs (i.e. those that appear in the process of interaction) also convey the designers’
message to users. In Figure 1 we see the sketch of a short span of interaction. When the user passes
the mouse over the % button, the system (speaking for the designer) sends the users a message
saying that it activates the “Check Spelling” function. When he/she clicks on that button, another
message is sent saying that the user’s goal was not achieved (* 7’) because “‘Spell checking is
temporarily disabled [and the user should] see www.sixlegs.com for details”. As users unfold all

such interactive signs while using SpiderPad, they gradually make sense of what SpiderPad means.

Test Preparation

The result of such sense making, in Semiotic Engineering, is the user’s interpretation of SpiderPad.
CEM is therefore a method to evaluate how well designers communicate their design intent to
users. It does so by capturing, categorizing, interpreting, and analyzing communicative breakdowns in
test situations. Such communicative breakdowns help evaluators identify, explain, and inform the

redesign of problematic interaction design.

Steps in Communicability Evaluation
CEM is achieved in three main steps: tagging, interpretation, and semiotic profiling. Prior to these, there

are two subsidiary steps: fest preparation and fest application.

Test Preparation

CEM preparation includes the following activities:

1. A thorough study of online and offline documentation of the application.

2. A thorough inspection of the application. (It is a good idea to talk with the designers about the
design intent, if this is possible.)

3. The selection of test scenarios and activities, based on critical design issues identified after reading
the documentation, inspecting the application, and talking to the designers. From a Semiotic
Engineering perspective, a critical design issue is one where the designer-to-user communication
is likely to fail. When design alternatives are being compared, the alternatives themselves constitute
critical issues.

4. The selection of test participants. The number of participants is typically small. CEM is not a
quantitative method, but a qualitative one. Results do not depend on the number of tests, but on
the depth and extent of semiotic associations that evaluators can established between intended signs
(obtained from reading documentation, inspecting the application, and talking to designers) and
interpreted signs (obtained from observing)

5. interaction and interviewing participants).

6. Preparing interviews. Knowing the participants is important to help evaluators detect how users
are likely to receive the designer’s communication, how familiar they are with the type of interface
language they will have to use in order to communicate with the application, what general
expectations they have regarding the use of computer tools to achieve the activities they are about
to perform, and so on.

7. Preparing printed material (if there is any). This may include a description of activities, forms
and/or questionnaires.

8. Setting up the equipment and the application. Tests must be recorded. Whenever possible, the
interaction with the application should be logged with screen capture software. The use of video
tape may complement screen capture. The advantage of using both is to be able to see the
participants’ body language, and capture verbalizations most of them produce during the test.

The meanings conveyed by body language and verbalizations, synchronized with interactions,

Communicability Evaluation

provides additional semiotic evidence of the presence of certain interpretive signs like “I don’t
know what to do now” (a blank look, no body movement), or “This is getting on my nerves”
(an angry look, the participant vociferates at the computer). Don’t forget to check the quality of
screen captures and video tape before tests are run—frame rates for screen capture and lighting for
video tape may ruin a test. Moreover, since some tests are likely to take some time, it is a good
idea to make sure that there is enough disk space, especially for temporary files. It is also desirable
to have a clone (or a TV) monitor in a separate place, where an observer can closely follow the

participant’s interaction and prepare questions for a post-test interview (see below).

Test Application

CEM application includes the following activities:

1. Welcoming and interviewing participants, prior to the interactive session. This includes a warm
up conversation, an explanation of the test and its purposes (in general—at times, detailed
explanations of purposes may influence results), and a pre-test interview.

2. Helping users feel comfortable with the equipment and the system (e.g. checking that the physical
conditions of the setting are OK, that the participants are relaxed and in a good mood).

3. Checking that all recording equipment is ready to go, and that the tester (evaluator) can take
notes during the test.

4. Taking notes during the test. The evaluator should be thoroughly familiar with CEM, and try
to detect communicability breakdowns on the fly during the test. He should note if there are
ambiguous symptoms of how the user has interpreted the designer’s communication through the
interface (e.g. if the participant achieves a task following an unexpected sequence of operations,
is it because she does not get the design message or because she deliberately chooses to do
something else?). Interviewing the participant after the test, and asking her what she had in mind
during interaction helps increase the quality of results. Also, asking what participants thought of
the experience, what impressions they got from the application, and so on, provides a wealth of
material for semiotic analyses.

5. Checking that recordings are safely stored as soon as the test is over. Screen capture movies may
be quite large files, depending on the data compression supported by the screen capture software

being used.

Tagging

Tagging amounts to annotating screen capture movies with communicability evaluation tags. These are
stereotypical expressions that the evaluator puts in the participant’s mouth, like: “What’s this?”,
“Where is it?”’, “Where am 17", “Help!”’, etc. Each expression is associated to patterns of breakdown

in communication. The full set of tags used in CEM is presented in [Table 1].

Tagging

Tag

Symptom

Remarks

Where is it?

The user knows what she is
trying to do (to communicate)
but cannot find an interface ele-
ment that will tell the system
to do it. She typically browses
menus, opens and closes dialog
boxes, hides and unhides win-
dow elements, looking for that
particular element.

Searches for interface activa-
tion elements usually start by
an educated guess of where
the element is most likely to
be placed. However, after some
time there may be no more
guesses to make, and the search
may turn into a “raster scan-
ning” of the interactive space.
If the user finds the element as
aresult of an educated guess the
breakdown is less serious than if
the element is only found after
a long scanning of the interface.

What now?

The user doesn’t know what
to do next (what to tell the
system), and so she wanders
around the interactive space
searching for an opportunistic
clue to restore productive com-
munication with the system.
Menus, dialog boxes, and tool-
bars may be inspected at ran-
dom, or in sequence.

The symptoms associated to
““Where is it?”" and “What now?"’
may be virtually the same. The
difference between the two
breakdowns is that in one case
the user knows what she is
doing, and in the other she
doesn’t. It is most often impos-
sible to tell, from the screen
capture only, if the user knows
or doesn’t know what she is
doing. Therefore, the symptoms
associated to ““Where is it?"" and
““What's this?"" are usually a
topic for disambiguation during
the post-test interview.

What's this?

The user does not understand
an interface sign, and looks for
clarification. She may pass the
mouse over the element in order
to get a tool tip, or examine the
behavior of the interface sign (to
see how the system responds).

Inspecting the meaning of inter-
face elements may come in
association with other break-
downs, or not. For instance, the
user may be engaged in pro-
ductive interaction (no break-
downs) and suddenly take a side
path to ask the system what a
particular element means. Alter-
natively, the user may ask the
system for clarifications while

(continued)

Table 1 Communicability Evaluation Tags

Communicability Evaluation Study

Tag

Symptom

Remarks

trying to resolve a breakdown.
For example, the inspection of
menus, dialog boxes, and other
interface elements while trying
to find the answer to ““Where
is it?” or “What now?” may
involve one or more “What's
this?”

Oops!

The user makes an instant mis-
take in interaction, and immedi-
ately corrects herself. A typical
symptom of “Oops!” is to undo
the faulty operation triggered
by miscommunication.

The correction of certain opera-
tions is easily done, by means of
the undo function. Other opera-
tions cannot be undone. In the
latter case, the user may have to
plan how to restore the state of
the system prior to the miscom-
munication. This may be a short
path, or end up into a major
breakdown, from which the user
will recover, or not. (See tags
I give up.” and "Looks fine to
me."’)

Where am I?

The user is telling things to the
system that would be appro-
priate in another context of
communication. This may result
from a misinterpretation of
the current interactive context.
Symptoms may include trying to
select objects that are not active
in the current context, or trying
to interact with signs that are
output only, for example.

There are usually remarkable
similarities between the current
context of interaction (where
the user’'s communication is
ineffective) and another context
of interaction (where the same
communication would be effec-
tive). Users of applications with
preview functions and WYSI-
WIG object editing style are
often confused, and try to edit
objects while previewing how
they will be printed.

I can’t do it
this way.

While trying to achieve a goal or
sub-goal, the user engages in a
several-step sequence of opera-
tions, but suddenly realizes that
this is not the right thing to do.
So, she abandons that sequence,
and takes another path.

The difference between
“Oops!"" and “I can’t do it this
way.” is the range of equivocal
actions communicated to the
system. “Oops!”’ characterizes a
single action, which is instantly
revoked. “I can’t do it this way.”"
involves a longer sequence of

Table 1 (continued)

Tagging

Tag

Symptom

Remarks

actions, which are abandoned
for another path.

Why doesn’t

it?

The user insists on repeat-
ing a certain operation that
does not produce the expected
effects. The user is aware that
these effects are not produced,
and that others are produced
instead. But insists on doing
the same thing time and again,
because she doesn’t understand
why the interaction is not right.
The repetition of the operation
may be in sequence, or sepa-
rated by one or more different
operations.

The typical reason for a “Why
doesn‘t it?"”” is that the user
strongly believes that what
she is doing should cause the
desired effects. So, she insists
on the same kind of action, try-
ing to find out if a particular
change of parameters or context
is possible or needed to make
the action “work"’.

Occasionally, the user may antic-
ipate that the effects will not
be what she expects, and not
fully activate the function. Nev-
ertheless she will start the same
communication over again (like
activate the same dialogue box,
open the same sub-menu, etc),
and abandon it before its full
achievement.

What
pened?

hap-

The user fails to understand the
system’s response to what she
told it to do. The typical symp-
tom of “what happened?” is the
repetitive activation of an oper-
ation whose effect is absent, or
not perceived.

Repetitive actions can be tagged
with “Why doesn’t it?” or
“What happened?” The differ-
ence between the two is that in
the first case the user can see
the effects caused by what she
is telling the system, whereas in
the latter she can't.

Occasionally, “What hap-
pened?” may be associated
to a single activation of a
function, followed by another
action that clearly indicates
that the user failed to get the
system’s response message. For
example, the system may have
given indication that the user’s
goal was achieved, or cannot

(continued)

Table 1 (continued)

Communicability Evaluation Study

Tag

Symptom

Remarks

be achieved for some overrid-
ing reason, or else that it can
be achieved if some particular
path is followed. Because she
did not get this message, her
follow-up action may be totally
inconsistent with the system’s
communication.

Looks fine to
me.

The user believes she has
achieved her goal, although she
hasn’t. The typical symptom is
when the user declares she
has successfully finished a task,
when she hasn‘t, really.

“Looks fine to me’” is used
to qualify the user's attitude
towards the final state of a task
or sub-task. It is important to
have evidence that the user is
indeed satisfied with the results,
and not simply abandoning the
task shortly before finishing it.

I give up.

The user believes that she can't
achieve her goal, and interrupts
the interaction (communication)
with the system.

"o

Like “Looks fine to me”, “I give
up” is used to indicate the fail-
ure in achieving a proposed task.
However, the user’s attitude in
one case is the opposite of the
other. “I give up” Indicates the
user's conscious frustration and
recognition that she could not
tell the system to do what she
wanted (possibly because she
could not make sense of what
the system was telling her in the
first place).

I can do other-
wise.

Because she can’t see or under-
stand that the system is telling
her what she can or must say
to achieve a particular goal, the
user communicates her inten-
tion by means of unexpected
signs. This may include achiev-
ing a goal because of the (side)
effects of interaction meant for
other purposes. However, it
most often corresponds to a sub-
optimal way of communica-

It is crucially important that the
user not be aware of better solu-
tions communicated by the sys-
tem. Typically, there are some
previous breakdowns in user-
system communication when “/
can do otherwise” finally hap-
pens. However, although less
usual, this tag may be the first
to appear in an interactive ses-
sion. The evaluator should clar-
ify the user's presuppositions
about how the

Table 1 (continued)

Tagging

Tag

Symptom

Remarks

tion (e.g. taking longer paths
or adopting a solution that is
faulty in some respects, in spite
of the system’s communication
of better solution alternatives
through the interface).

system works during the post-
test interview.

Thanks, but
no, thanks.

Although the user has under-
stood the system’s communica-
tion about which design solu-
tions should or are expected
to be preferred to others, she
deliberately chooses to commu-
nicate her intent with unex-
pected signs.

As with other tags, “Thanks,
but no, thanks” is associated to
the same kinds of symptoms as
another tag, namely “I can do
otherwise.” The difference lies
in the user’s attitude. Hence the
importance of post-test inter-
views.

Although the user understands
the system communication in
this case, it is nevertheless a case
of communicative breakdown
because the designer's deputy
discourse will always communi-
cate a particular design intent by
means of signs that the user con-
siders less adequate for the con-
text than the ones she chooses
to use.

Help!

The user explicitly asks for help,
either the system’s, or some-
body else’s (e.g. the evalua-
tor's). Accessing online help,
searching online or offline doc-
umentation, talking to others,
online or offline, about the
problem, all constitute symp-
toms of this kind of communica-
tive breakdown.

“Help!”” is a kind of meta-
level tag, in that it projects the
user into explicit communication
about communication with the
system (or metacommunication,
technically). This is not neces-
sarily a serious breakdown—in
fact, the evaluator may realize
that this is not a breakdown
instance at all. It may well be a
sign of the user’s curiosity about
the system, which ultimately
amounts to successful interac-
tion, rather than unsuccessful
one. The difference between
one case and the other should
be clarified during the post-test
interview.

Table 1 (continued)

Communicability Evaluation

Interpretation

Interpretation, as the name suggests, amounts to answering the following question: ‘“What meanings
does the evaluator assign to the tagged movies?”’ The answer to this question will tell how successful
the designer’s communication is. Success is associated to the absence (or insignificant amount) of
communicative breakdowns.

The evaluator should pay attention to such factors as:

1. How often, and in which particular context, each type of tag has appeared (per participant, per
task, overall)?

2. Are there tagging patterns (similar sequences of tags) that can be identified (across tasks for the
same participant, across participants for the same task, overall)?

3. Can tag types or sequences be regularly associated to problems in establishing communicative
goals or sub-goals?

4. 1If (as is desirable) the evaluator has used additional evaluation methods (e.g. heuristic evaluation
or a cognitive walkthrough), is there a correspondence between the locus of tag occurrence and
that of problems indicated by the other methods?

Answers to the questions above will help the evaluator interpret the meaning of tagged movies
and decide if there are communicability problems with the application under evaluation. If there are,
the evaluator will be able to tell what problems, and why. The explanation is referred to one or more

of the following categories of breakdown in communication:

* The user cannot express what he/she means.

* The user chooses the wrong way to express what he/she means.

* The user cannot inferpret what the system expresses.

* The user chooses the wrong interpretation for what the system expresses.

* The user cannot even formulate a communicative intent.

All of the above turn around the essence of communication: expressing content and intent,
by using signs at hand. These signs may spring from a variety of origins, like: sign systems
deeply ingrained in the culture (or sub-culture) of all interlocutors involved in communica-
tion; sign systems from a culture (or sub-culture) that not all interlocutors share; sign collections
(not necessarily systems) associated to the context of communication; and even signs inciden-
tally invented or transformed (as is the case in metaphoric communication, for example) by

interlocutors.

Semiotic Profiling

Semiotic Profiling

The semiotic profiling step should help the evaluator identify, explain, and inform the redesign of
problematic interaction design. This is achieved though a reconstruction of the designer-to-user global
communication message. The content of the message can be summarized as this (the first person “I”

in the message is the designer, or a spokesperson for the design team):

“Here is my understanding of who you are, what I've learned you want or need to do, in which
preferred ways, and why. This is the system that I have therefore designed for you, and this is the
way you can or should use it in order to fulfill a range of purposes that fall within this vision.”

Tagged interactions, and their corresponding interpretations, will allow the evaluator to find

evidence to answer the following questions:

1. Who do the designers think are the users of the product of their design? (i.e. Who are the apparent
receivers of the designers” communication?)

2. What do they think are these users’ wants and needs? (i.e. How is communication tailored to
privilege certain wants and needs, and not others?)

3. Which do they think are these users’ preferences with respect to their wants and needs, and why?
(i.e. How and why is the users” communication with the system facilitated in certain contexts, and
not others? Are there communicative choices available?)

4. What system have they consequently designed for these users, and how can or should they use it?
(i.e. How consistently do the design principles match the designers’ communication about the
users they expect to be talking to?)

5. What is the designers’ global design vision? (i.e. How is the technology made available through the

system expected to be received, and to transform the users’ lives in a positive way?)

If tagging and interpretation provide evidence of communicative problems, questions 1-5 will
lead the evaluator sense making, and help identify the reasons for such problems. All signs involved
in communication and miscommunication constitute a frace of the user’s interpretation and/or intent
while interacting with the system. One of the advantages of CEM is that such traces can inform a
redesign of the application. For example, a high frequency of “Where is it?”’ tags may be associated
to some patterns of search—suppose that users have difficulty to find where some configuration tool
is, and that most users start looking for it in the “Tools” menu. They do not find it there, because
the designers decided that the configuration tool should be grouped with the options of some other

menu (e.g. “View”). The tagged movies are telling evaluators that the users’ understanding of that

Communicability Evaluation Study

particular configuration activity is related to their understanding of what fools can be used for (and not
what view is all about).

The comparison between the design intent, as witnessed by the creators of the application, and
the design interpretation, as witnessed by the interactive sessions with users, is guided by tagging and
interpretation. And the conclusion of the comparison (plus explanations and suggestions) is achieved
in the semiotic profiling. As a result, CEM is a fine characterization of the quality of the user-system
communication, in view of the purpose of design. Good communicability means that designers
have got their message across very well. Users may, however, repurpose the application, and happily
use the technology in some unanticipated way. This is an interesting situation (not unusual for
extensive parts of the technology, if not for the technology as a whole), which other evaluation
methods don’t pay much attention to. If users got the designers’ message, alright, but decided to
use the technology in some other way (”Thanks, but no, thanks.”), communicability was good.
However, if the users did not get the designers message right, and imagined some other interpretation
for the technology that nevertheless allows them to use it for their purposes (“I can do otherwise.”),
there is a communicability problem with the application. The problem may be serious if a usability
problem is caused by the misunderstanding—for example, if users do what they want to do but
spend much more time and effort than they would if they had got the designers’ message right. This

situation shows the explanatory power of CEM—it is not a predictive explanation, but a descriptive one.

The Case Study

Because of the explanations provided above, we will only briefly describe the essence of CEM steps
in this study.

Arachnophilia and SpiderPad
The study involved the use of two HTML tag editors: Arachnophilia 3.9 and SpiderPad 1.5.3. Both
editors can be downloaded from the Web.

Arachnophilia [http://www.arachnoid.com/arachnophilia/]allows users to:

* Create HTML pages using a suite of powerful tools.

* Upload your Web site to your Internet service provider using Arachnophilia’s built-in FTP service.

* Fully customize Arachnophilia’s menus, toolbars and keyboard commands. Arachnophilia lets you
create or remove any commands, toolbars, or menus you want to.

* Beautify, and analyze the structure of, your Web pages, so they will be more likely to be error-free
and work correctly with more browsers.

* Create working environments for many kinds of programming tasks using Arachnophilia’s fully

customizable menus and toolbars.

The Case Study

SpiderPad [http://www.sixlegs.com/] allows users to:

* Create/edit HTML code

* Create templates which will prompt you for information when used

* Edit/Correct tag attributes

* Customize the interface (and application) for greater efficiency and comfort

* Use graphic tools to design tables, frames and forms

Purpose of the Evaluation

The practical purpose of the evaluation was to compare how users interpreted the designer’s message
in one case and the other. Although both editors have been designed to help users create and edit
HTML pages, the peculiarities of design are quite different. So, the idea was to investigate how well

these peculiarities were communicated to users.

Participants

Ten participants with varying levels of expertise in HTML were selected. None of them had had
any previous contact with either editor. Participants were split up into two groups: one worked first
with Arachnophilia, and then with SpiderPad. The other followed the reverse order. After 5 minutes
of exploration with each editor, they were asked to: (1) create a nested list of items, with particular
numbering and bullet types; (2) change the background color of an existing HTML page; (3a) create
a 2x2 table with border and title (caption); and (3b) edit the table by merging the two cells in the

first row. They were allowed a maximum of 4 minutes to perform each task.

The Physical Setup
Tests were carried out in a lab situation. Participants used a personal computer. The session was
logged with Lotus ScreenCam, and videotaped. An observer took notes and carried out pre- and

post-test interviews.

An example of the Participants’ Activities
In the first task, users were asked to create a white page, with two lists: a numbered list with 2 items,

and an indented bulleted list of 3 items (all items are words in Portuguese):

1. arroz
2. frutas
 abacaxi

¢ uva

e banana

Communicability Evaluation Study

Two examples of the test records
The following is a description of movies Task 1A Arachnophilia and Task 1A SpiderPad. (If needed,
download CODEC file for playback with Windows Media Player.)

User’s interaction with Arachnophilia:

The user first creates a new page (File > New file > HTML file). He sets the background and
text colors as white and black, respectively. Next, he locates the TITLE tag and types in the
title of the web page. He opens the Struct and Styles toolbars, possibly looking for a list wizard.
For the numbered list, instead of using specific HTML tags, he types in the numbers, dots, and
items. For the bulleted list, he browses the toolbar buttons, possibly looking for a list wizard. He
shows the “Struct” toolbar and opens the List Wizard dialog box, hesitates hovering between
the Create and Hide buttons, and finally dismisses the dialog box by clicking on the “X” close
button located at the top-right corner of the box. He then clicks on the LI button on the Struct
toolbar, and the application inserts an tag on the document window. He then types the
first item of the bulleted list, followed by carriage return. He types the remaining items without
the tag. He hovers over a few toolbar buttons, and returns to the LI button. He moves the
cursor to the beginning of the second list item, and clicks on LI. The application then inserts the
second tag. The user then moves to the beginning of the third list item, and clicks on LI
again, to insert the third tag. He starts to browse the Struct toolbar buttons again, possibly
looking for a way to indent the whole list. He shows the Graphics toolbar, shows and hides the
Forms toolbar. He goes back to the LI button, hesitates over it but presses the neighboring Bot
button, which inserts an application-specific tag. He deletes the tag, hesitates a little bit, moves
the window, scrolls the document up and down, and declares that he has completed the task.

However, the user didn’t succeed in creating the intended web page, because the resulting bulleted
list was not indented with relation to the first.

When reviewing the interaction movie, the evaluators tagged it, i.e. identified moments of
interaction breakdown with communicability tags. We now repeat the narration, indicating in

boldface the tags that the evaluators assigned to segments of the movie, formatted in underlined text.

The user first creates a new page (File > New file > HTML file). He sets the background and
text colors as white and black, respectively. Next, he locates the TITLE tag and types in the
title of the web page.

He opens the Struct and Styles toolbars, possibly looking for a list wizard. [WHERE IS IT?|

For the numbered list, instead of using specific HTML tags, he types in the numbers, dots, and items. [I
CAN DO OTHERWISE]

For the bulleted list, he browses the toolbar buttons, [WHAT’S THIS?|
again possibly looking for a list wizard. [WHERE IS IT?|
He shows the “Font” toolbar but opens the List Wizard dialog box, from the Struct toolbar.

He hesitates hovering between the Create and Hide buttons, [WHAT’S THIS?|

User’s interaction with SpiderPad:

possibly looking for a way to dismiss the dialog box. [WHERE IS IT?|

Finally, he dismisses the dialog box by clicking on the “X’ close button located at the top-right corner of
the box. [CAN’T DO IT THIS WAY]

He then clicks on the LI button on the Struct toolbar, and the application inserts an tag
on the document window. He then types the first item of the bulleted list, followed by carriage
return. He types the remaining items without the tag. He hovers over a few toolbar
buttons, and returns to the LI button. He moves the cursor to the beginning of the second list
item, and clicks on LI. The application then inserts the second tag. The user then moves
to the beginning of the third list item, and clicks on LI again, to insert the third tag.

He starts to browse the Struct toolbar buttons again, [WHAT’S THIS?]

possibly looking for a way to indent the whole list. He shows the Graphics toolbar, shows and hides the
Forms toolbar. [WHERE IS IT?|

He goes back to the LI button, inserts a fourth tag but immediately erases it. [OOPS!|

He then presses the neighboring Bot button, which inserts an application-specific tag, and again immediately
deletes it. [OOPS!]

He hesitates a little bit, moves the window, scrolls the document up and down, and declares that
he has completed the task, without even attempting to preview the generated page. [LOOKS FINE TO
ME.|

User’s interaction with SpiderPad:

The application starts with a blank document. The user selects the HTML tag from the Structure
toolbar menu, and then the BODY tag. The application inserts both tags in the same line. The
user moves the cursor in between the tags and presses the Enter key to move the BODY tag
one line down. The user opens the Lists, Heading and Structure menu, looking for the file
header. From the Structure menu, the user selects the TITLE tag. The application inserts both
opening and closing tags. The user types in “Teste” and places the cursor after the BODY tag.
He opens the Font, Heading, List and Structure toolbar menus. Then the user passes the mouse
over several toolbar buttons, and opens the Insert pull-down menu. He hovers over the Modify
pull-down menu, but immediately returns to the Insert menu and selects the “Body Tag’ item.
The application presents the “Modity Body” dialog box. The user changes the background
color to white. The application inserts the BGCOLOR attribute within the BODY tag. The
user types in the closing </BODY> tag. He looks for some way of inserting a list in the
Tags menu, and chooses the Unordered list menu item (which is the wrong type of list). The
application inserts both opening and closing UL tags. He types in the two items, goes back to
the Tags menu, hesitates for a very little while and then chooses the Ordered list menu item.
The application inserts both opening and closing OL tags. Realizing the first choice was wrong,
the user erases the opening UL tag, and cuts the two items, pasting them inside the newly
inserted OL tags. Next, he erases the extra UL closing tag. He moves the cursor after the first
item, selects the “List item” menu item in the Tags menu and types the first item of the second
list. He repeats these actions for the two remaining items. He cuts the closing OL tags and

Communicability Evaluation Study

pastes it between the two lists. Finally, he types in a closing tag after the last item of the
second list, and declares that he has completed the task, without even attempting to preview the
generated page.

In the following we repeat the above narration, indicating in boldface the tags that the evaluators

assigned to segments of the movie, formatted in underlined text.

The application starts with a blank document. The user selects the HTML tag from the Structure
toolbar menu, and then the BODY tag. The application inserts both tags in the same line. The
user moves the cursor in between the tags and presses the Enter key to move the BODY tag
one line down.

The user opens the Lists, Heading and Structure menu, looking for the file header. [WHERE IS IT?]

From the Structure menu, the user selects the TITLE tag. The application inserts both opening
and closing tags. The user types in “Teste’” and places the cursor after the BODY tag.

He opens the Font, Heading, List and Structure toolbar menus. Then the user passes the mouse over several
toolbar buttons, and opens the Insert pull-down menu. He hovers over the Modify pull-down menu, but
immediately returns to the Insert menu and selects the “Body Tag” item. [WHERE IS IT?|

The application presents the “Modify Body” dialog box. The user changes the background
color to white. The application inserts the BGCOLOR attribute within the BODY tag.

The user types in the closing tag. [I CAN DO OTHERWISE.]

He looks for some way of inserting a list in the Tags menu, and chooses the Unordered list menu item
(which is the wrong type of list). [WHERE IS IT?]

The application inserts both opening and closing UL tags. He types in the two items, goes
back to the Tags menu, hesitates for a very little while and then chooses the Ordered list menu
item. The application inserts both opening and closing OL tags. Realizing the first choice was
wrong, the user erases the opening UL tag, and cuts the two items, pasting them inside the
newly inserted OL tags. Next, he erases the extra UL closing tag. He moves the cursor after the
first item, selects the “List item” menu item in the Tags menu and types the first item of the
second list. He repeats these actions for the two remaining items. He cuts the closing OL tags
and pastes it between the two lists.

Finally, he types in a closing tag after the last item of the second list, and declares that he has
completed the task, without even attempting to preview the generated page. [LOOKS FINE TO ME. |

Pre-Test & Post-Test Interviews

The pre-test interview asked participants about:

1. What kinds of tools did they use to create HTML pages?
2. How did they do it?
3. What tools did they use to modify existing pages?

User’s interaction with SpiderPad:

4. How many HTML pages had they already created?
5. What level of expertise in HTML did they think they had?
6. What was their favorite fext editor?

7. What operating system did they use (for web publishing and related activities)?

In addition to disambiguating portions of the observed interaction, in the post-test interview the

evaluator asked participants about:

. What were the perceived differences between Arachnophilia and SpiderPad?

. Which of the two editors did they prefer and why?

. What kind of user did they think the HTML editors were designed for? Why?

. Which frequent tasks did each editor support best? Why?

. Did they think they were targeted users of Arachnophilia and/or SpiderPad? Why?
. In which of the two editors is it easier to create a table? Why?

N NV A RN =

. In which of the two editors is it easier to modify a table? Why?

Observer's Annotations

Here are two examples of useful annotations made by the observer during the interactive sessions.

“Participant X is typing the HTML tags directly; only uses the editor’s tag tools if he is not sure of
which tag he should use (+ attributes, etc).” [Notice the observed reason for the participant’s not
using some of the editor’s tag tools. This reason is inferred from various observed signs: the
participant’s typing speed, body posture, facial expression, etc.|

“Because Participant Y has used Arachnophilia first, he is confused with SpiderPad’s blank page—is there
additional code hiding somewhere? See how he opens the edited page code in Notepad (!) in order to see
if there is something else there.”” [Notice the observer’s instant interpretation of what is going on
in this participant’s mind. This interpretation is supported by the whole context of the text, in
which the observer is fully immersed.]

Tabulation and Interpretation
Here are examples of tabulations and interpretations produced during CEM.

In Figure 2 we see a portion of the tabulations of tags x participant x task. Notice how participants
differ in their communicative experience. Whereas some have difficulty in finding the appropriate
way to express themselves (““Where is it?) in both editors (see participant 1m), others seem to have
no difficulty with one of them (see participant 1g with SpiderPad). Also, in some cases, some kinds of
communicative breakdown seem to decrease over time (see ‘Oops!”” for participant 1m’s progressive
tasks with Arachnophilia), whereas others don’t (see ““Oops!” for participant 1¢’s progressive tasks
with SpiderPad).

Communicability Evaluation Study

Figure 2 A snapshot of a complete tagl/participant/task tabulation

The interpretation of tagged movies, tabulations, observations and interviews, allowed the
evaluator to draw interesting conclusions about the editors. There are basically two main factors to

explore in comparing the editors:

* First, both Arachnophilia and SpiderPad caused considerable problems of navigation for the
participants (a high frequency of “Where is it?”’). It was also difficult, in both editors, to assign
meanings to many interface symbols. But the frequency of meaning-assigning problems with
SpiderPad was higher than with Arachnophilia. This is a curious result, given that most participants
explicitly said, in the post-test interview, that SpiderPad was easier than Arachnophilia. However,
the frequency of communicative breakdowns directly associated to (sub)task failures (““I give up”
and “‘Looks fine to me’’) was slightly better in SpiderPad (31 hits) than in Arachnophilia (36 hits).

Second, Arachnophilia was somewhat more conversational than SpiderPad, in that it had a smaller
number of hits (97) than SpiderPad (108) for tags like “Where is it?”’, ““Oops!”’, “What’s this?”’,
“What happened?”” and “Why doesn’t it?”’. This observation is in line with the kind of discourse we

find in each editor’s help contents. SpiderPad’s help is terse and impersonal (e.g. the designer gives
the following instruction for adding a row/column to a table: ““To add a row or column, select
a cell and click the appropriate button. Rows are added above the row of the selected cell, and
columns are added to the left of the selected cell.””). Arachnophilia’s help style, however, is quite

the opposite. The designer directly addresses the users and explicitly stands as the first person in

User’s interaction with SpiderPad:

discourse (we even know the designer’s name), as evidenced by phrases like “T can’t know what
your background is or how much you know about computers, so you may choose...” (help content for
topic How to make your own page). Moreover, in Arachnophilia help is organized in a tutorial way,

whereas in SpiderPad it is organized in a functional way.

The Semiotic Profile of Arachnophilia & SpiderPad
The answers to the 5 questions for the semiotic profiling stage allow us to see clearly some of the

main differences between Arachnophilia and SpiderPad.

1. Who do the designers think are the users of the product of their design? (i.e. Who are the apparent receivers

of the designers’ communication?)
CEM suggests that Arachnophilia’s designer is talking to HTML learners—people who don’t
know HTML, but are eager to learn. SpiderPad’s designer, however, is talking to HTML
coders—people who know enough about HTML, and would be glad to have a tool to accelerate
their coding.

2. What do they think are these users’ wants and needs? (i.e. how is communication tailored to privilege certain
wants and needs, and not others?)

Arachnophilia’s designer provides tips and explanations throughout interaction, adopting a verbose
style that is typically used for novices. SpiderPad’s designer provides functions that build larger
portions of HTML coding.

3. Which do they think are these users’ preferences with respect to their wants and needs, and why? (i.e. how

and why is the users’ communication with the system facilitated in certain contexts, and not others? Are there
communicative choices available?)
Through long dialogs, and extensive use of comments in the generated HTML code,
Arachnophilia’s designer places a high value on the user’s ability (and desire) to learn by
doing. SpiderPad’s design puts the user in control, and behaves in a reactive way, assuming that the
user knows what he is doing.

4. What system have they consequently designed for these users, and how can or should they use it? (i.e. how
consistently do the design principles match the designers’ communication about the users they expect to be
talking to?)

Arachnophilia is a tutorial tool for HTML coding, whereas SpiderPad is a foolbox itself. Both
applications provide powerful customization and extension facilities (i.e. template creation,
macro-programming, etc.). However, the gap in Arachnophilia is much larger than in SpiderPad.
The tutorial tone in Arachnophilia breaks down when advanced programming features are
introduced. In SpiderPad, however, advanced programming is totally in line with the “expert
user profile” that the designer addresses in all communications (especially through online help

content).

Communicability Evaluation Study

5. What is the designers’ global design vision? (i.e. How is the technology made available through the system
expected to be received, and to transform the users’ lives in a positive way?)
Arachnophilia is clearly expected to offer users a positive learning experience, whereas Spi-
derPad is designed to facilitate the coding effort. The challenge for Arachnophilia is to grow
with the learner. The design is so densely populated with signs whose communicative intent
is to teach, that advanced users may have a negative reaction to the technology. In fact,
some of the participants in this evaluation explicitly said that they didn’t like Arachnophilia
because it treated them as beginners. Of course, conversely, SpiderPad doesn’t help begin-
ners at all. This is an important result of CEM, since a function-by-function comparison
between both editors shows that they have a lot in common, and that Arachnophilia can even
support some very advanced coding tasks that SpiderPad cannot. But because the communi-
cation is so clearly addressed to different interlocutors, the functionality may never get to be

used.

Bibliography

Semiotic Engineering

O de SOUZA, C. S. (2005) The semiotic engineering of human-computer interaction. Cambridge,
MA. The MIT Press

Introduction to CEM

O PRATES, R. O.; de SOUZA, C. S; BARBOSA, S. D. J. (2000) “A Method for Evaluating
the Communicability of User Interfaces””. ACM interactions, Jan-Feb 2000. pp 31-38.

Observing the Users” Learning Curve

o0 PRATES, R. O.; BARBOSA, S. D. J.; de SOUZA, C. S. “A Case Study for Evaluating
Interface Design through Communicability”. Proceedings of the ACM Conference on Designing Interactive
Systems, DIS’2000. Agosto de 2000. pp. 308-316.

Operational, Tactical and Strategic Communicability Breakdowns (JBCS, 2000)
o de SOUZA, C. S.; PRATES, R. O.; CAREY, T. “Missing and declining affordances: Are

these appropriate concepts?”. Journal of the Brazilian Computer Society, SBC. Porto Alegre, RS, v. 7,
n. 1, p. 26-34, 2000.

User’s interaction with SpiderPad:

Communicability Evaluation with different technologies (Prates, 2001; Prates, 2004)

0 de SOUZA, C. S.; PRATES, R. O.; de ASSIS, P. S. (2001) “Categorizing communicability
evaluation breakdowns in groupware applications”. 2nd South African Conference on Human-Computer
Interaction (CHI-SA 2001),10—-12 of September, 2001.

o PRATES, R. O.; LEITAO, C. F.; FIGUEIREDO, R. M. V. “Desafios de Avaliagio de
Interfaces de Ambientes Educacionais—Um Estudo de Caso’’. In: VI Simpésio sobre Fatores Humanos
em Sistemas Computacionais, IHC’2004. 2004, Curitiba. Anais do VI Simpésio sobre Fatores Humanos
em Sistemas Computacionais. Porto Alegre : Sociedade Brasileira de Computagio, 2004. p. 185-188.

SERG Website: http://www.serg.inf.puc-rio.br

